Quantitative Measurement of Cerebral Oxygen Extraction Fraction Using MRI in Patients with MELAS
نویسندگان
چکیده
OBJECTIVE To quantify the cerebral OEF at different phases of stroke-like episodes in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) by using MRI. METHODS We recruited 32 patients with MELAS confirmed by gene analysis. Conventional MRI scanning, as well as functional MRI including arterial spin labeling and oxygen extraction fraction imaging, was undertaken to obtain the pathological and metabolic information of the brains at different stages of stroke-like episodes in patients. A total of 16 MRI examinations at the acute and subacute phase and 19 examinations at the interictal phase were performed. In addition, 24 healthy volunteers were recruited for control subjects. Six regions of interest were placed in the anterior, middle, and posterior parts of the bilateral hemispheres to measure the OEF of the brain or the lesions. RESULTS OEF was reduced significantly in brains of patients at both the acute and subacute phase (0.266 ± 0.026) and at the interictal phase (0.295 ± 0.009), compared with normal controls (0.316 ± 0.025). In the brains at the acute and subacute phase of the episode, 13 ROIs were prescribed on the stroke-like lesions, which showed decreased OEF compared with the contralateral spared brain regions. Increased blood flow was revealed in the stroke-like lesions at the acute and subacute phase, which was confined to the lesions. CONCLUSION MRI can quantitatively show changes in OEF at different phases of stroke-like episodes. The utilization of oxygen in the brain seems to be reduced more severely after the onset of episodes in MELAS, especially for those brain tissues involved in the episodes.
منابع مشابه
Preoperative Cerebral Oxygen Extraction Fraction Imaging Generated from 7T MR Quantitative Susceptibility Mapping Predicts Development of Cerebral Hyperperfusion following Carotid Endarterectomy.
BACKGROUND AND PURPOSE Preoperative hemodynamic impairment in the affected cerebral hemisphere is associated with the development of cerebral hyperperfusion following carotid endarterectomy. Cerebral oxygen extraction fraction images generated from 7T MR quantitative susceptibility mapping correlate with oxygen extraction fraction images on positron-emission tomography. The present study aimed ...
متن کاملQuantitative measurement of oxygen extraction fraction by MRI in patients with cerebrovascular disease: pre- and post-surgery.
AIM We aimed to evaluate cerebral hemodynamic status of preoperative and postoperative revascularization treatment by oxygen extraction fraction (OEF)-magnetic resonance imaging (MRI) in patients with severe cerebrovascular stenosis or occlusive disease. MATERIAL AND METHODS This study enrolled 9 symptomatic patients with severe cerebrovascular disease and 9 age-matched normal volunteers. Cer...
متن کاملQUantitative Imaging of eXtraction of oxygen and TIssue consumption (QUIXOTIC) using venular-targeted velocity-selective spin labeling.
While oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO(2)) are fundamental parameters of brain health and function, a robust MRI-based mapping of OEF and CMRO(2) amenable to functional MRI (fMRI) has not been established. To address this issue, a novel method called QUantitative Imaging of eXtraction of Oxygen and TIssue Consumption, or QUIXOTIC, is introduced. The k...
متن کاملQUantitative Imaging of eXtraction of oxygen and TIssue
While oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) are fundamental parameters of brain health and function, a robust MRI-based mapping of OEF and CMRO2 amenable to functional MRI (fMRI) has not been established. To address this issue, a novel method called QUantitative Imaging of eXtraction of Oxygen and TIssue Consumption, or QUIXOTIC, is introduced. The key i...
متن کاملMRI measurement of oxygen extraction fraction, mean vessel size and cerebral blood volume using serial hyperoxia and hypercapnia
Functional magnetic resonance imaging measures signal increases arising from a variety of interrelated effects and physiological sources. Recently there has been some success in disentangling this signal in order to quantify baseline physiological parameters, including the resting oxygen extraction fraction (OEF), cerebral blood volume (CBV) and mean vessel size. However, due to the complicated...
متن کامل